Spectral functions for regular Sturm-Liouville problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Eigenvalues of regular Sturm - Liouville problems

The eigenvalues of Sturm-Liouville (SL) problems depend not only continuously but smoothly on the problem. An expression for the derivative of the n-th eigenvalue with respect to a given parameter: an endpoint, a boundary condition constant, a coefficient or weight function, is found.

متن کامل

Regular approximations of singular Sturm-Liouville problems

Given any self-adjoint realization S of a singular Sturm-Liouville (S-L) problem, it is possible to construct a sequence {Sr} of regular S-L problems with the properties (i) every point of the spectrum of S is the limit of a sequence of eigenvalues from the spectrum of the individual members of {Sr} (ii) in the case when S is regular or limit-circle at each endpoint, a convergent sequence of ei...

متن کامل

Inverse Spectral Problems for Nonlinear Sturm-liouville Problems

This paper concerns the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t)) = λu(t), u(t) > 0, t ∈ I := (0, 1), u(0) = u(1) = 0, where λ is a positive parameter. We try to determine the nonlinear term f(u) by means of the global behavior of the bifurcation branch of the positive solutions in R+ × L2(I).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2015

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4918616